Creates a summary of the first and last daily detection at a site, the length
of time between first and last detection, the number of tags, and the total
number of detections at a site for each day. Same as siteSum()
, but daily
by site.
Arguments
- data
a selected table from .motus data, eg. "alltagsGPS", or a data.frame of detection data including at a minimum variables for
motusTagID
,sig
,recvDeployName
,ts
- units
units to display time difference, defaults to "hours", options include "secs", "mins", "hours", "days", "weeks"
Value
a data.frame with these columns:
recvDeployName: site name of deployment
date: date that is being summarized
first_ts: time of first detection on specified "date" at "recvDeployName"
last_ts: time of last detection on specified "date" at "recvDeployName"
tot_ts: total amount of time between first and last detection at "recvDeployName" on "date, output in specified unit (defaults to "hours")
num.tags: total number of unique tags detected at "recvDeployName", on "date"
num.det: total number of detections at "recvDeployName", on "date"
Examples
# Download sample project 176 to .motus database (username/password are "motus.sample")
if (FALSE) sql_motus <- tagme(176, new = TRUE)
# Or use example data base in memory
sql_motus <- tagmeSample()
# convert sql file "sql_motus" to a tbl called "tbl_alltags"
library(dplyr)
tbl_alltags <- tbl(sql_motus, "alltagsGPS")
# convert the tbl "tbl_alltags" to a data.frame called "df_alltags"
df_alltags <- tbl_alltags %>%
collect() %>%
as.data.frame()
# Create site summaries for all sites within detection data with time in
# minutes using tbl file tbl_alltags
daily_site_summary <- siteSumDaily(tbl_alltags, units = "mins")
# Create site summaries for only select sites with time in minutes using tbl
# file tbl_alltags
sub <- filter(tbl_alltags, recvDeployName %in% c("Niapiskau", "Netitishi",
"Old Cut", "Washkaugou"))
daily_site_summary <- siteSumDaily(sub, units = "mins")
# Create site summaries for only a select species, Red Knot, with default
# time in hours using data frame df_alltags
daily_site_summary <- siteSumDaily(filter(df_alltags,
speciesEN == "Red Knot"))